Design and Analysis of MEMS Piezoresistive SiO2 Cantilever-based Sensor with Stress Concentration Region for Biosensing Applications

نویسندگان

  • Rosminazuin Ab. Rahim
  • Badariah Bais
  • Burhanuddin Yeop Majlis
چکیده

This paper uses finite element method to obtain the optimal performance of piezoresistive microcantilever sensor by optimizing the geometrical dimension of both cantilever and piezoresistor. A 250 μm x 100 μm x 1 μm SiO2 cantilever integrated with 0.2 μm thick Si piezoresistor was used in this study. The sensor performance was measured on the basis of displacement sensitivity and surface stress sensitivity. The resulting maximum displacement value is about 0.7 nm for an applied load of 250 pN. A comparison between polySi and SiO2 cantilever has been carried out which shows the latter gives higher displacement for the same applied load. The sensor sensitivity was investigated by varying cantilever thickness as well as piezoresistor thickness. Simulation results show that the cantilever sensitivity is maximum when both the cantilever and the piezoresistor thicknesses are at minimum. Simulations were also conducted on the effects of incorporating various stress concentration region (SCR) designs at the bottom of the cantilevers. Cantilevers with incorporated stress concentration regions shows improved sensitivity over the cantilever without SCR. The cantilever with a rectangular shaped SCR extended up to the edge of the cantilever width yields a maximum Mises stress of 0.73 kPa compares to the other designs. For the same design, the cantilever with minimum SCR thickness of 0.2 μm yields maximum stress which results in maximum sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peizoresistive Mems Cantilever based Co2 Gas Sensor

A study about the piezoresistive Micro-Electro-Mechanical Systems (MEMS) cantilever for a chemical sensitive mass based sensor has been carried out to enhance sensor sensitivity. The sensitive region attracts the CO2 molecules there by introducing the stress concentration region (SCR). Three types of SCR geometry designs were first analysed using Intellisuite software to study the effect of str...

متن کامل

Peizoresistive MEMS Cantilever based CO2 Gas Sensor

A study about the piezoresistive Micro-Electro-Mechanical Systems (MEMS) cantilever for a chemical sensitive mass based sensor has been carried out to enhance sensor sensitivity. The sensitive region attracts the CO2 molecules there by introducing the stress concentration region (SCR). Three types of SCR geometry designs were first analysed using Intellisuite software to study the effect of str...

متن کامل

New Design of Mems piezoresistive pressure sensor

The electromechanical analysis of a piezoresistive pressure microsensor with a square-shaped diaphragm for low-pressure biomedical applications is presented. This analysis is developed through a novel model and a finite element method (FEM) model. A microsensor with a diaphragm 1000 „m length and with thickness=400 µm is studied. The electric response of this microsensor is obtained with applyi...

متن کامل

Mems cantilever sensors pdf

S.Z. cantilevers are made using a simple one-mask fabrication process with.characterization of a cantilever-type MEMS chemical sensor for detection of chemicals. MEMS has been with the advancement of cantilever-type sensors.sensor. The mechanical structure is a cantilever, having its own resonant frequency. MEMS cantilevers can be as thin as a few nanometers with lengths.Cantilever-based Sensor...

متن کامل

Couple Stress Effect on Micro/Nanocantilever-based Capacitive Gas Sensor

Micro/nanocantilevers have been employed as sensors in many applications including chemical and biosensing. Due to their high sensitivity and potential for scalability, miniature sensing systems are in wide use and will likely become more prevalent in micro/nano-electromechanical systems (M-NEMSs). This paper is mainly focused on the use of sensing systems that employ micro/nano-size cantilever...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009